垃圾渗滤液废水处理方法
目前我国渗滤液废水处理主流工艺为:生化处理+超滤+反渗透、DTRO浓缩、直接蒸发、DTRO+蒸发。第一种工艺中由于渗滤液废水盐及有机物含量较高,容易造成膜阻塞及穿透,并且在运行过程中有浓水产生,长期运行导致废水盐分富集,系统瘫痪;第二种工艺中DTRO浓缩,能够短期内解决废水达标排放的目的,随着运行时间的延长,DTRO产生的浓水造成废水中盐及有机物富集,造成后续系统无法长期运行;第三、四种工艺在运行过程中需要大量蒸汽或者天然气,一般填埋场设置在郊区,无法实现,且在运行过程中会产生大量的盐。
根据目前国内渗滤液废水处理技术的弊端,本文主要探究非膜法渗滤液废水处理工艺,该工艺实现出水水质达到《污水排入城镇下水道水质标准》(GB/T31962-2015)中A等级排放标准,其中特征污染物COD≤500mg・L-1。
通过本技术的实施,有望决绝垃圾填埋场废水处理的难题,并且该技术可以进行有效复制,推广价值极高,工业化应用推广意义较大,能够有效地解决我省乃至全国渗滤液废水“无路”处理的技术难题。
1、实验部分
1.1 仪器与试剂
A/O生化模拟装置、芬顿氧化模拟装置、COD检测仪、721分光光度计、曝气装置、搅拌装置、各种玻璃仪器。
重铬酸钾、硫酸、硫酸银、硫酸亚铁铵、纳氏试剂、酒石酸钾钠等药剂,所有药剂均为分析纯。
1.2 分析方法
COD:重铬酸钾氧化法;
氨氮:纳氏试剂比色法。
1.3 实验步骤与方法
1)取5000mL垃圾渗滤液,中和pH值后放入一级A/O生化模拟装置中,通过改变生化反应时间,观察垃圾渗滤液废水中COD及氨氮的变化趋势;
2)将一级A/O生化后废水放入芬顿氧化装置中,通过改变芬顿氧化试剂的量及反应时间,观察废水COD的变化趋势;
3)将芬顿氧化后废水放入二级A/O生化模拟装置中,通过改变生化反应时间,观察垃圾渗滤液废水中COD及氨氮的变化趋势。
2、结果与讨论
2.1 一级A/O生化实验
调节渗滤液废水pH为7.5~8,将废水放置于A/O生物反应器中,控制A/O生物反应器中温度为30℃左右,溶解氧控制到2~3mg・L-1,污泥质量浓度MLSS为2800~3500mg・L-1,SV30在30%左右,观察反应器中COD与氨氮随着时间的变化曲线,具体实验情况如图1、图2下所示。
由图1、图2可以看出,随着时间的变化,废水中COD及氨氮逐渐降低,当反应时间为48h左右时,废水中氨氮和COD趋于稳定状态。通过上述实验可以看出,废水中COD在菌胶团作用下,将废水中有机物进行吸附,并消耗其废水中的有机物作为自身微生物生长所需要的碳源,最终以二氧化碳的形式释放出去。在硝化及反硝化的作用下,废水中氨氮首先通过硝化菌转化为硝酸盐及亚硝酸盐,通过废水的回流作用,将废水打入A池中,A池中反硝化微生物将废水中硝酸盐及亚硝酸盐转化为氮气释放出去,从而实现废水COD及氨氮都降低的目的。
从图中可以看出,最佳的反应时间为48h,此时废水中COD达到1300mg・L-1左右,氨氮达到650mg・L-1左右。
2.2 芬顿氧化实验
将一级A/O反应后废水放入芬顿氧化塔中进行反应,控制废水pH为3左右,为提高废水的反应效率,反应塔采用循环泵进行流化反应,实现废水反应更加充分的目的。通过改变硫化亚铁及双氧水的含量,观察废水中COD及氨氮的变化曲线,具体实验数据如图3、图4所示。
由图3可以看出,随着芬顿药剂量的增加,废水中COD逐步降低,当芬顿药剂与废水比例为0.7%左右时,废水中的COD基本没有变化。由图4可以看出,虽然氨氮随着芬顿药剂的变化有部分变化,但是变化基本不大,且无规律性可言,去除效率也不明显,故可以判定芬顿氧化对废水中的氨氮无去除效果。
芬顿在氧化过程中会产生大量的羟基自由基,这些羟基自由基具有非常强的氧化效果,在酸性条件下能够将废水中的有机物氧化成二氧化碳和水,释放到大气环境中,从而实现降低COD的目的,随着试剂量的增加,大分子物质已基本被氧化成小分子物质,所以才会出现芬顿试剂与废水比例达到0.7时,废水中COD基本无变化的情况发生。由于氨根离子不能够与羟基自由基进行有效的反应,故在废水处理过程中氨氮基本无变化。
2.3 二级A/O生化实验
芬顿后废水pH调整为7.5~8,将废水放置于二级A/O生物反应器中,控制A/O生物反应器中温度为30℃左右,溶解氧控制到2~3mg・L-1,污泥质量浓度MLSS为2800~3500mg・L-1,SV30在30%左右,观察反应器中COD与氨氮随着时间的变化曲线,具体实验情况如图5、图6所示。
由图5、图6可以看出,随着时间的变化,废水中COD及氨氮逐渐降低,当二级反应时间为48h左右时,废水中氨氮和COD趋于稳定状态。
从图中可以看出,最佳的反应时间为48h,此时废水中COD达到350mg・L-1左右,氨氮达到100mg・L-1左右。
2.4 次氯酸钠催化氧化实验
对二级A/O生化处理后废水进行次氯酸钠催化氧化实验,采用二氧化钛作为催化剂,催化剂添加量为10mg・L-1,通过改变次氯酸钠的添加量观察废水中氨氮及COD的变化曲线,然后在最佳次氯酸钠添加量的条件下,通过改反应时间,观察废水中氨氮及COD的变化曲线,具体实验结果如图7、图8所示。
图7反应时间控制在5h,由图7可以看出,随着次氯酸钠添加量的增加,废水中的COD及氨氮能够被有效降解,在次氯酸钠添加量达到1000mg・L左右时,此时废水中的氨氮及COD趋于稳定状态。
由图8可以看出,当次氯酸钠添加量为1000mg・L-1时,废水中的氨氮及COD随着时间的变化先降低后趋于稳定,当反应时间为3h时降解速率最大,当反应时间为5h时,降解效率最高。
由于次氯酸根(OCI)的O-CI键具有很强的氧化能力,能够将废水中的有机物有效氧化,变为二氧化碳和水,从而实现COD降解的目的。在次氯酸根(OCI)的强氧化作用下,废水中的铵根离子先氧化为一氯胺、二氯胺和三氯胺,随着次氯酸钠添加量的增加,废水中的一氯胺、二氯胺和三氯胺被转化为氮气释放出来,从而实现废水氨氮降解的目的。此时处理后废水中的COD能够达到180mg・L-1,氨氮能够达到35mg・L-1。
3、结论
1)通过上述实验可以发现,采用一级A/O+芬顿氧化+二级A/O+次氯酸钠氧化处理工艺对垃圾渗滤液废水处理效果较明显。
2)采用一级A/O处理后废水COD去除率能够达到65%,氨氮去除率能够达到68%。
3)采用芬顿氧化能够有效地去除废水中有机物,降低COD,但是对氨氮基本无效果。
4)采用二级A/O处理后废水COD去除率能够达到21%,氨氮去除率能够达到85%。
5)次氯酸钠处理后废水中的COD能够达到180mg・L-1,氨氮能够达到35mg・L-1。
(来源:无棣县公用事业服务中心)